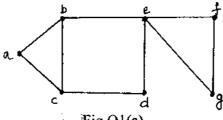
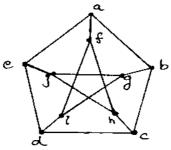


Fourth Semester B.E. Degree Examination, June/July 2015 **Graph Theory and Combinatorics**

Time: 3 hrs.


Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.


PART - A

- a. For the following graph determine,
 - i) A walk from b to d that is not a trail
 - ii) A b-d trail that is not a path
 - iii) A path from b to d
 - iv) A closed walk from b to b that is not a circuit
 - v) A circuit from b to b that is not a cycle
 - vi) A cycle from b to b.

(06 Marks)

- Fig.Q1(a)
- Define subgraph, spanning subgraph, induced subgraph and complete graph with example. (07 Marks)
- c. Prove that the undirected graph G = (V, E) has an Euler circuit if and only if G is connected and every vertex in G has even degree. (07 Marks)
- Define planar graph and prove that the following Petersen graph is nonplanar using 2 Kuratowski's theorem. (06 Marks)

- Fig.Q2(a)
- b. Prove that in a complete graph with n-vertices, where n is an odd number ≥ 3 , there are (n-1)/2 edge – disjoint Hamiltonian cycles. (07 Marks) (07 Marks)
- c. Find the chromatic polynomial for the following graph.

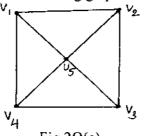


Fig.2Q(c) 1 of 3

- 6 a. Find the number of integers between 1 to 10,000 inclusive, which are divisible by none of 5, 6 or 8. (06 Marks)
 - b. Determine in how many ways can the letters in the word ARRANGEMENT be arranged so that there are exactly two pairs of consecutive identical letters. (07 Marks)
 - c. i) Find the rook polynomial for the shaded chessboard

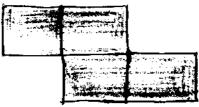


Fig. Q6(c)(i)

ii) Let $A = \{1, 2, 3, 4\}$ and $B = \{u \ v, w, x, y, z\}$. How many one to one functions $f : A \to B$ satisfy none of the following conditions:

 $C_1: f(1) = u \text{ or } v;$ $C_2: f(2) = w;$ $C_3: f(3) = w \text{ or } x;$ $C_4: f(4) = x, y \text{ or } z.$ (07 Marks)

- 7 a. Find the coefficient of x^{15} in $\frac{(1+x)^4}{(1-x)^4}$. (06 Marks)
 - b. A ship carries 48 flags, 12 each of the colors red, white, blue and black. Twelve of these flags are placed on a vertical pole inorder to communicate a signal to other ships. Determine, how many of these signals have atleast three white flags or no white flags at all. (07 Marks)
 - c. Find the formula to express: $0^2 + 1^2 + 2^2 + \dots + n^2$ as a function of n using summation on operator. (07 Marks)
- 8 a. Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$ and $F_1 = 1$. (06 Marks)
 - i) A bank pays 6% interest compounded quarterly. If Laura invests \$ 100 then how many months must she wait for her money to double?
 - ii) The number of bacteria in a culture is 1000 and this number increases 250% every 2 hours. Use a recurrence relation to determine the number of bacteria present after one day.

 (07 Marks)
 - c. Solve the recurrence relation : $a_{n+2} 5a_{n+1} + 6a_n = 2$, $n \ge 0$, $a_0 = 3$, $a_1 = 7$ using method of generating functions. (07 Marks)

* * * * *